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Abstract

A new effort to model the flow in a 90� rectangular duct by adopting three low-Reynolds-number turbulence models, two eddy-
viscosity models (a linear and a non-linear) and a Reynolds-stress model, is presented. The complex flow development is a challenge
for the application of turbulence models in order to assess their capability to capture the secondary flow and the developing vortices
due to curvature and strong pressure gradient effects. The numerical results show that both the non-linear eddy-viscosity and the Rey-
nolds-stress models can provide good results, especially for the velocity distributions. The superiority of the Reynolds-stress model is
shown primarily in the Reynolds-stress distributions, which have the best quality among the predictions from the other models. On
the other hand, the main advantage of the non-linear model is its simplicity and the smaller needed CPU cost, compared to the Rey-
nolds-stress model. Additionally, in some stations of the flow development, the non-linear model provides good velocity distributions.
The linear model gives lower quality predictions for the Reynolds-stress distributions, although it is capable in providing quite satisfac-
tory results for the velocity distributions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In many areas of mechanical engineering, there is a need
to model the flow through simple geometries involving
complex flow field development. A typical example is the
flow through closed straight or curved ducts. These flow
fields present large recirculation zones, secondary vortices
and in general, three-dimensional phenomena. Usually,
the flow field is developed as fully turbulent and in relation
with the three-dimensional developing phenomena, the use
of an accurate turbulence model is nearly obligatory. A
characteristic example of such flow configurations is the
flow field development in an automotive engine air-mani-
fold or in the inlet duct of a turbo-compressor device.
Another example can be found in the pump industry where
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a preliminary design is usually performed by modeling the
passage through a centrifugal pump with a curved duct. A
correct modeling of these flow fields can provide all the
necessary information for the accurate design of these
devices regarding in most cases the efficiency coefficient.
On the other hand, there are situations where the experi-
ments for these configurations are very difficult to be car-
ried out and with a noticeable cost. Nowadays, the
engineer has available powerful CFD commercial packages
designed to use the most advanced numerical schemes and
grid utilities. These tools are also supported by a plethora
of turbulence models. Until now, the industry has focused
on ‘‘quick and costless solutions’’, but since the upper lim-
its of design have been pushed upwards, new needs are aris-
ing focusing on the very accurate predictions which have
the potential to improve the operation of an engineering
product. The research in the area of turbulence modeling
is still in progress and various formulations of more
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Nomenclature

c1,c2,c3,c4,c5,cl turbulence parameters (linear and non-
linear eddy-viscosity models)

dij diffusion term (Reynolds-stress model)
dijk diffusion term in the triple moments correlation

(Reynolds-stress model)
H duct width
k turbulent kinetic energy
Pij turbulence production term (Reynolds-stress

model)
P 1

ijk production term in the triple moments correla-
tion (Reynolds-stress model)

P 2
ijk production term in the triple moments correla-

tion (Reynolds-stress model)
Sij mean strain-rate tensoreS dimensionless strain parameter
U0 duct inlet velocity

Greek symbols

dij Kronecker delta
e dissipation rate of k
~e ‘‘homogeneous’’ dissipation rate of k

eij dissipation (Reynolds-stress model)
eijk dissipation term in the triple moments correla-

tion
m kinematic viscosity
mt eddy-viscosity (linear and non-linear eddy-vis-

cosity models)
Pij pressure correlation (Reynolds-stress model)
/ijk pressure correlation term in the triple moments

correlation (Reynolds-stress model)
Xij mean vorticity tensoreX dimensionless vorticity parameter
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sophisticated models than the classical standard k–e model
are forthcoming. During the previous decade, the Rey-
nolds-stress models (RSM) have taken a central position
in the turbulence modeling field while, new alternative
formulations such as explicit algebraic stress models or
non-linear eddy-viscosity models (NLEVM) have been
developed. The general sense is that the RSMs have the
potential to provide more accurate results. The NLEVMs
are a hybrid formulation between the linear eddy-viscosity
models and RSMs, they are simpler to adopt in a Navier–
Stokes solver and they have been tested in numerous flow
configurations. The numerical results show that they can
provide satisfactory solutions, better than the ones
obtained by the linear models. In general, RSMs are very
complicated, and they require a lot of programming effort
and increased CPU power. Additionally, in some cases,
they can present an unstable behavior during an iterative
procedure, thus further numerical techniques are needed
in order to obtain a stable and successful convergence.

Returning back to the complex flow configurations, the
flow in a closed duct is primarily characterized by the exis-
tence of finite walls, which enclose the flow. A curved con-
figuration of a closed duct generates high-pressure
differences from the convex to the concave wall, leading
to a flow governed by strong pressure and curvature effects.
The importance of the phenomena developing through a
curved duct has been shown many times in the past by
numerous experiments in setups of ducts having various
configurations such as different cross-sections (circular or
rectangular), different inner and outer diameters, or even
different bowing (U-ducts or 90� ducts), see for example
the experiments of Ellis and Joubert (1974), Smits et al.
(1979), Monson et al. (1990), Davis and Gessner (1992)
and Cheah et al. (1994). In the present work, the 90� rect-
angular duct configuration has been chosen. The experi-
mental data have been provided by the ERCOFTAC site
and refer to the measurements of Kim and Patel (1993)
using the pressure probe and hot-wire measurement tech-
niques. They are very detailed and cover the majority of
the cross-sections where major full 3D flow phenomena
are developing. The main mechanism of the flow develop-
ment is based on the formation of two symmetrical vortices
in the cross-sectional direction in the curved region leading
to strong secondary motions. The computed Reynolds
number using the duct width H = 0.203 mm and the inlet
velocity U = 16 m/s, is equal to 224,000. The advantage
of the detailed measurements is that they can be used as
a reference for the validation of turbulence models and,
this is the reason for the large number of publications,
where attempts of modeling these types of flows have been
presented. A literature survey has shown that the UMIST
group, has made a very significant contribution which
has been proven very helpful for the derivation and evalu-
ation of the new variants of turbulence models especially
suitable for the modeling of rotating and heated ducts pre-
sented by the same group. Examples of this effort are the
publications of Craft et al. (1996), Iacovides et al.
(1996a,b). Tamamidis and Assanis (1993) have performed
computations in a 90� curved duct of square cross-section
but they were primarily focused on the accuracy of the
numerical schemes adopted in order to obtain satisfactory
velocity distributions with the use of an elliptic Navier–
Stokes solver. For the case of a U-duct, Rumsey et al.
(2000) presented results by adopting the Spalart–Almaras
one equation model, the two-equation SST model and
the Gatski and Speziale (1993) explicit algebraic stress
model. They concluded that none of the three models could
capture the flow parameters especially in the convex wall of
the duct although a full RSM does (they did not include
further detailed information for the adopted RSM). Sotir-
opoulos and Ventikos (1998) presented results for the same
duct as the present one by adopting four two-equation
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models, two LEVM (the two-layer k–e and the k–x model)
and two NLEVM based on the k–x formulations of Abid
et al. (1995) and Sofialidis and Prinos (1996) using the qua-
dratic model of Gatski and Speziale (1993) and the cubic
model of Craft et al. (1996), respectively. They concluded
that the isotropic linear models were ‘‘inaccurate for resolv-
ing complex three-dimensional flow’’ while the model of
Craft et al. (1996) yielded the best overall predictions espe-
cially for the Reynolds stresses.

In the present work, the flow modeling was performed
by using three different turbulence models, the Launder
and Sharma (1974) low-Re-number k–e model, the Craft
et al. (1996) NLEVM and the RSM of Craft (1998) which
is an alternative low-Re-number formulation of Craft and
Launder (1996) model. The choice of these models has been
made for the following reasons: the LEVM has been used
widely in the industry (in the majority of the commercial
CFD codes this model is included) and it is still a first
choice for a quick and stable prediction of complex flow
fields, despite its well-known deficiencies primarily related
to its isotropic behavior. The CLS NLEVM has been used
in a large variety of flow setups and it has been proven that
it can provide very satisfactory predictions, even in transi-
tional flows, Craft et al. (1997), Palikaras et al. (2002,
2003), it is quite stable during an iterative procedure (by
adopting quite simple stabilizing measures) and it needs a
small amount of programming effort. Additionally, Sotiro-
poulos and Ventikos (1998) concluded that this cubic for-
mulation provided better predictions than the quadratic
formulation of Gatski and Speziale (1993). The Rey-
nolds-stress model of Craft (1998) is a relatively new
model. Although it is a quite complex model, it has the
advantage of not using any wall distance, an aspect that
is found to be very difficult to implement when a three-
dimensional flow with walls is considered.

The computational results for the velocity field and Rey-
nolds stress distributions are presented in detailed compar-
isons with the available experimental data and a grid
independency study is performed for three grids.

The modeling of this flow setup has been motivated by
the desire to investigate the performance of advanced tur-
bulence models presented so far. In most cases an engineer
is asking questions regarding primarily their capability to
provide good results combined with an ease of applicabil-
ity. Additionally, the standard engineer’s question is ‘‘is it
worth proceeding with a model that in most cases is quite
complex, difficult to program and time-consuming for a
complicated flow configuration?’’ Through the following
sections an attempt will be made to answer to these
questions.

2. Brief description of the adopted models

2.1. The linear and non-linear eddy-viscosity model

The first model is the Launder and Sharma (1974)
LEVM. Since it has been a widely used and referenced
model, no details will be provided. The Craft et al. (1996)
model is based on a cubic constitutional expression for
the Reynolds-stresses:
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The model solves the set of turbulent kinetic energy and
turbulent dissipation rate transport equations. Since it is a
low-Reynolds number model it uses a damping function
for the eddy viscosity. Additionally, for the calculation of
the eddy viscosity, the cl coefficient is ‘‘strain-sensitized’’
and instead of having the typical constant value equal to
0.09 it is computed from an alternative expression using
the dimensionless strain and vorticity parameters:
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2.2. The low-Reynolds-number Reynolds-stress model

The low-Reynolds number RSM is a further develop-
ment of the Craft and Launder (1996) Reynolds-stress
model, which is based on the two-component-limit con-
cept. Craft (1998), in order to enhance the accuracy of
the two-component-limit behavior near the walls, intro-
duced some extra terms into the pressure correlation. The
model solves the following stress-transport equation:

Duiuj

Dt
¼ P ij þPij � eij þ dij ð2Þ

where Pij is the production of turbulence, Pij is the pressure
correlation term, eij is the dissipation rate and dij is the dif-
fusion term. Only the term corresponding to the produc-
tion of turbulence does not require any modeling. Details
for these terms can be found in the paper of Craft (1998)
but a discussion will be made regarding especially the diffu-
sion term. This term is represented by the expression:
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and includes the term of the triple correlations (turbulent
diffusion) which needs further modeling. Craft presented
an alternative approach for the triple correlations, instead
of adopting the expression of Hanjalic and Launder
(1972). He used the transport equation for the triple
correlations:

Duiujuk

Dt
¼ P 1

ijk þ P 2
ijk þ /ijk þ dijk � eijk ð4Þ
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The first two terms, appearing in the right hand of the
equation, represent the production and are exact. The pres-
sure and the diffusion correlations need further modeling
(the reader can find the details for these terms in to the
work of Craft (1998)). Additionally, the dissipation rate eijk

is modeled using the isotropic dissipation. Fortunately,
there is no need to solve one additional equation for the
transport of the triple correlations. Craft (1998) suggested
neglecting the convection terms in the left side of Eq. (4).
Thus, he obtained a set of an algebraic system of equations,
which is solved in a simple manner. The solution of the tri-
ple correlations is used to model the diffusion term. During
our first runs, the adoption of Eq. (4) gave some problems
primarily focused on the unstable behavior of the solver.
Thus, we have decided to perform the computations with
the generalized gradient diffusion hypothesis (GGDH) of
Daly and Harlow (1970) which models the turbulent diffu-
sion term using the equation:
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mdkl þ 0:22ukul
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e
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In any case this ad hoc action generates some skepticism
and undoubtedly further attempts should be made in order
to obtain a fully-converged solution using the original
formulation.

3. Numerical aspects and computational details

For the flow modeling, an in-house academic elliptic
incompressible Navier–Stokes solver has been used. The
solver uses the non-staggered arrangement in a structured
grid for the solved flow parameters and a second-order
scheme for the interpolation of the convective terms, Zhu
(1991). The computational domain started at a distance
equal to 4.5H upstream of the bend and extended to a dis-
tance up to 30H after the bend. During our first attempts to
model the flow, both the non-linear and the Reynolds-
stress models presented unstable behaviors. For this rea-
son, some stability measures have been introduced to the
Table 1
Summary of the stability measures and their level of success

Preliminary iterations using the LEVM

Treatment of the source terms (based on their sign) in the turbulence energy a
dissipation rate discretized equations

Use of pseudoviscosities
Treatment of the source terms (based on their sign) in the discretized Reynold

stress equations (only for the normal stress components)
Clipping of turbulence dissipation rate
Clipping of the negative values of the normal stress during an iteration

Clipping of the A and A2 parameters during an iteration (0 < A < 1, 0 < A2 <
Clipping of the turbulent Reynolds number Rt = max(0,Rt)
Use of low values for the under-relaxation factors (the Reynolds-stress

discretized equations)
solver. For the non-linear model, the proposed techniques
by Craft et al. (1999) improved the stability, although it has
been experienced that performing some preliminary itera-
tions using the linear model and then switching to the
non-linear could provide a very stable behavior towards
convergence. Regarding the Reynolds-stress model, vari-
ous techniques have been tested in order to ensure stability.
It was found that the most effective techniques were the
clipping techniques for the A and A2 parameters (for the
definition of these parameters, see Craft, 1998), and also
the clipping for the lower positive bounds of the normal
Reynolds stresses, turbulent Reynolds number and turbu-
lence dissipation rate. Additionally, the special treatment
for the positive and negative source terms in the discretized
Reynolds-stress transfer equations has been found to be
very helpful. Details for the latter technique can be found
in the paper of Craft et al. (1999). Finally, a relatively small
under-relaxation factor for these variables, usually equal to
0.1, contributed in a positive manner to a stable conver-
gence. Table 1 summarizes the adopted stability measures
and their level of success.

It is well understood that the correct inlet conditions
contribute a lot to the quality of the predictions and also,
to the fair assessment of an adopted model. For the inlet
conditions, the interpolated and adapted to the grid points,
inlet experimental values, have been used and special care
has been taken in order to have the exact inlet conditions
for all the flow parameters. Similar values with the ones
used at the inlet section have been used for the total flow
field, including a transformation also for the curved area
of the duct, in order to setup the initial values. For the
LEVM, a turbulent length scale equal to 0.5H has been
used. This value gave in the core regions of the flow, Rey-
nolds-stress distributions which are identical with the mea-
sured ones.

The solver has been parallelized for execution on a
small computer cluster of 8 dual CPUs. For the parallel-
ization, the MPI protocol has been adopted. The flow
domain was divided to 16 sub-domains, each of them cor-
NLEVM RSM

Good level of
success

N/A The solver started with initial values for
the Reynolds stresses based on the inlet values

nd Good level of
success

Applicable only for the turbulence dissipation
rate discretized equation. Good level of success

Not used Unsuccessful
s- Not

applicable
Good level of success

Not used Good level of success
Not
applicable

Good level of success

8/3) Not applicable Good level of success
Not used Good level of success
Not used Good level of success, very slow convergence
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Fig. 1. Topology of the grid, sub-domains for parallel execution and two cross-sections showing the base grid.
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responding to one CPU and special care has been taken in
order to have a balanced problem to prevent any CPU
from having ‘‘dead times’’ of waiting. Fig. 1 shows the
topology of the duct with the sub-domains corresponding
to each of the CPUs and two views of the grid. As the
grid clustering is finer (towards the bottom wall), the split-
ting of the grid is performed to sub-domains having smal-
ler size in the z-distance but the same number of grid
points.

The convergence criterion has been chosen to be 1ÆE�05
for the dimensionless residuals (the dimensionalization was
based on the inlet fluxes of the resolved flow quantities) of
the main flow parameters. For the Reynolds-stresses, con-
vergence occurred when the dimensionless residuals were
four orders lower than the ones computed during the first
iteration.

The grid dimensions (for the corresponding i, j,k indices)
were 172 · 138 · 132. These dimensions refer to the ‘‘base’’
grid. The typical user time for convergence was: 2 h for the
LEVM, 2 1

2
h for the NLEVM and about 72 h for the RSM.

Undoubtedly, the RSM is a big time-consumer but this can
be related also to the small values of the under-relaxation
factors used in order to have a stable convergence. For
the grid-dependency studies, two additional grids were con-
structed having dimensions 172 · 93 · 84 and 172 · 48 · 52
(the alternative grid dimensions were chosen to be different
only in the j and k planes where the duct walls are topolog-
ically placed). Regarding the y+ values close to the wall it
was ensured that at least for the two finer grids, 10 points
in the normal to the wall direction had y+ < 0.1 (the coar-
ser grid gave corresponding values larger than 0.5 but not
greater than 1). Undoubtedly, this value is very small, com-
pared to a typical value, which is close to unity, but it was
found that a fine grid resolution, close to the wall was
needed in order to compute the complex derivatives
appearing in the Reynolds-stress model without sudden
divergence during the iterative computational procedure.
Due to the limitations on memory and CPU resources, a
grid having the double dimensions (for the three indices)
was not tested. Thus, the grid-independency study is not
a ‘‘proper’’ study although some indicative conclusions
can be derived regarding the behavior of the models when
similar grids with different sizes are used.

4. Results and discussion

4.1. Skin-friction coefficient and grid-dependency

The grid-dependency studies have been performed using
the non-linear and the Reynolds-stress model and they
were based on the skin-friction coefficient and velocity dis-
tributions. Figs. 2 and 3 show the comparative plots of the
skin-friction coefficient computed by the non-linear eddy-
viscosity model and the Reynolds-stress model, respec-
tively, when the three grids are used. Especially for the
RSM, it was impossible to obtain a successful convergence
with the coarse grid. For the non-linear model, all the three
grids present similar results. In the curved region of the
duct, for the convex and concave walls, the base and the
fine grid give nearly identical predictions. However, small
differences occur in the distribution on the bottom wall
but in general, the base and the fine grid provide results
with close agreement. The same conclusions are derived
for the Reynolds-stress model, Fig. 3. Both grids provide
similar results. An intercomparison between the predic-
tions obtained using the NLEVM and the RSM shows
clearly that the first model gives better results for the
skin-friction coefficient especially in the curved region of
the duct. The RSM fails to capture the local distortion of
the coefficient and tends to present a smoother distribution.
Some explanations for this could be the use of the GGD
hypothesis instead of the original proposed model for the
triple correlations by Craft (1998).

Finally, in order to support the conclusions about the
behavior of the models using different grids, the compara-
tive plots of the velocity distributions obtained by the
RSM, in the 45� station (as indicated in Fig. 1) and for
z/H = 0.5, are presented, Fig. 4.
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grid, dot-dash line: base grid, dotted line: coarse grid.

0

0.001

0.002

0.003

0.004

0.005

0.006

0 5 10 15 20

c
f

(RSM)

S/H on convex wall

4.4<curved region<9.2

0

0.001

0.002

0.003

0.004

0.005

0.006

0 5 10 15 20

S/H on concave wall

4.5<curved region<10.8

c
f

(RSM)

0

0.001

0.002

0.003

0.004

0.005

0.006

0 5 10 15 20

S/H on bottom wall

4.4<curved region<10.

c
f

(RSM)

Fig. 3. RSM grid-dependency: skin-friction coefficient for the convex,
concave and bottom wall. Circles: experimental values, solid line: finer
grid, dot-dash line: base grid.

40 K. Yakinthos et al. / Int. J. Heat and Fluid Flow 29 (2008) 35–47
In general, the results obtained for skin-friction coeffi-
cient and the velocity distributions, are similar, although
it cannot be concluded that the base grid is the one that
can provide a grid-independent solution. It is clear that
an additional investigation should be performed by having
the full double grid in the three dimensions (and by contin-
uing the study) but, as already written above, this was
impossible due to the computer resource limits.
4.2. Predictions and detailed comparisons with the

experimental measurements

The physics of the flow has been widely discussed by
other researchers in the past. The basic mechanism of the
flow development is strongly related to the duct’s
curvature, which generates a pressure field with different
distribution from the convex to the concave wall. The
longitudinal pressure distribution on the convex wall
causes the flow to accelerate and this is clearly shown in
the vector plots of the velocity distribution on the symme-
try plane, for all the three models and in comparison with
the measurements, Fig. 5a. As a general observation, the
three models are able to predict the local acceleration of
the axial velocity close to the convex wall. In a more
detailed investigation, the maximum values of the axial
velocity differ from model to model and this will be shown
later. In Fig. 5b, the vector and contour plots of the veloc-
ity magnitude on the cross-section referring to the last sta-
tion located at a distance 4.5H after the bend (coded as
D2), are shown. In these plots, the left boundary is the con-
vex wall, the right boundary is the concave wall and the
upper and lower boundaries correspond to the top and bot-
tom walls of the duct. The full three-dimensional regime of
the flow starts to develop at the early stations of the bend.
The flow forms two symmetrical vortices, which are devel-
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oping until the exit of the duct. For each station, the size of
the vortex located either to the top or bottom wall differs
depending on the adopted model. At the 45� station (not
shown here) the LEVM, predicts the vortex-center to be
at a smaller distance from the convex wall than the two
other models. At the D2 station (Fig. 5b) the behavior of
the models changes. The LEVM and the NLEVM predict
the location of the vortex-center closer to the symmetry
plane. Finally, it has been found that the three models
for all the cross planes, predict different vortex sizes.
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The comparative plots of the computed and measured
velocity and Reynolds-stress distributions for the measure-
ment stations 45� and D1 give the appropriate information
regarding the capability of the turbulence models to pro-
vide accurate predictions. In these plots, the velocity com-
ponents have been nondimenionalized using the mean inlet
velocity U0 while the Reynolds-stresses have been nondi-
mensionalized using the square of the mean inlet velocity
(U 2

0Þ. The distances have been nondimensionalized using
the duct width H. For the same figures, y/H = 0 corre-
sponds to the convex wall and y/H = 1 to the concave wall.
Additionally, z/H = 0.0625 refers to the first measurement
plane near the bottom wall of the duct, and z/H = 3 to the
symmetry plane. As a general observation, both the Rey-
nolds-stress and the non-linear models provided good
predictions.

Since the experimental measurements have been carried
out on a system following the spatial evolution of the duct-
geometry, for the presentation of the computational results
a transformation has been performed for the solved Carte-
sian velocity vector and the computed or solved Reynolds-
stress tensor. The transformation matrix is given by
A = [aij], where aij refers to functions including the direc-
tional cosines. Thus, a vector is transformed using
~V transformed ¼ A � ~V cartesian and a tensor is transformed using
Ttransformed = A Æ Tcartesian Æ AT. From hereafter all the
velocity components and the elements of the Reynolds-
stress tensor will refer to their transformed values.

4.3. Measurement station 45�

Figs. 6 and 7 show the computed mean velocity profiles
with the three adopted models and their comparison with
the experimental data. Regarding the axial velocity compo-
nent, U, the three models can provide quite satisfactory
results. They can predict the general trend of the experi-
0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

U/U
o

y/H

-0.4 -0.3 -0.2
0

0.2

0.4

0.6

0.8

1
y/H

Fig. 6. Dimensionless velocity distribution at 45� measurement station and f
NLEVM, solid line: RSM.
mental distributions, which indicate a maximum value near
the convex wall, shown also in the meridional cross-section
of the duct in Fig. 5a. This maximum value is generated by
the longitudinal negative pressure gradient along the con-
vex wall, which by consequence accelerates the flow in
the convex wall region. Among the three models, both
the RSM and the NLEVM can predict this maximum
value, although there are some small differences between
them. The NLEVM predicts a thicker boundary layer on
the convex wall. For the position located closer to the bot-
tom wall (z/H = 0.0625, Fig. 6), the NLEVM computes
correctly the boundary layer thickness and this holds also
for the station located on the symmetry plane (z/H = 3,
Fig. 7). On the other hand, the RSM computes a thinner
boundary layer on the convex wall for the two z/H stations
and it cannot capture exactly the axial-velocity maximum
value (caused by the vortex pair) of the experimental data.
Other stations (not shown here) showed similar trends. The
linear model fails to provide good predictions in the convex
wall region and systematically predicts a thicker boundary
layer. In the core flow region (0.2 < y/H < 0.7) the RSM
predictions for the axial velocity, are in good agreement
with the experimental measurements. This observation is
not valid for the first station at z/H = 0.0625, close to the
bottom wall, where the model fails to predict a local distor-
tion of the velocity located at y/H = 0.5. This local distor-
tion is well predicted by the NLEVM although it has been
found that the model underpredicts the axial velocity in the
core region for stations located at z/H = 0.5 and
z/H = 0.75 (both stations not shown here). For the symme-
try plane, z/H = 3, the NLEVM predicts with a good accu-
racy the core flow region. The linear model for the z/H
locations predicts larger axial velocity values than the mea-
sured ones.

As we move to higher y/H values, and in the concave
wall region, the RSM predicts systematically a thinner
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boundary layer, while the predictions of the NLEVM are
closer to the measurements presenting thicker boundary
layers, an observation noticed by Sotiropoulos and Venti-
kos (1998) also, when the k–x cubic non-linear variant
was adopted. The linear model also predicts thicker con-
cave wall boundary layers.

The V- and W-velocity distributions, Figs. 6 and 7, show
clearly the existence of the vortex pair formed in the convex
wall region. Here, the RSM has a lower level of accuracy
compared to the NLEVM. The latter proves capable in
capturing well the V-velocity distribution in the convex
wall region, at least for the first z/H = 0.0625 location. In
the core region, and for the same velocity component, the
NLEVM provides the best results. It can capture the trends
of the velocity distributions, although it is not able to com-
pute identical values to the measured ones. Systematically,
it underpredicts the V-velocity values. On the other hand,
the linear model and the Reynolds-stress model give results
of lower quality. Finally, regarding again the V velocity, in
the concave wall region all the models provide results of
similar quality, which are very close to the experimental
data. The same trends follow the predictions of the three
models for the other stations, which are not shown.

The W-velocity component is generally well predicted by
all the models, especially in the core region of the flow. The
advantage of the RSM is clearly indicated in the region of
the convex wall where the boundary layer thickness is com-
puted to have the same thickness with the measured one.
Again, the linear and the non-linear model predict thicker
boundary layers. The quality of the predictions for all the
models is lower in the concave wall region. Nevertheless,
they provide acceptable results. All the models predict sim-
ilar velocity distributions, except in the last z/H location
where again the eddy-viscosity models compute larger
and thicker boundary layers.

Figs. 8–10 show the results for the Reynolds-stress dis-
tributions. In the convex wall and core flow region, the
model is able to provide acceptable distributions for the
two stations and for all the stresses components. Apart
from these two z/H stations, for the other stations (not
shown here), similar behavior regarding the Reynolds-
stress predictions from the RSM has been observed. On
the other hand, the two eddy-viscosity models predict lar-
ger mean velocity fluctuations, especially inside the bound-
ary layers developed on the convex wall. Additionally, the
eddy-viscosity models systematically predict larger values
for the Reynolds stresses in the core flow at the first loca-
tion near the bottom wall (z/H = 0.0625, Fig. 8). In the
concave wall region, the Reynolds-stress model fails to pro-
vide reasonable predictions. For this region, the experimen-
tal values show that the three normal Reynolds-stress
components have relatively large values covering in some
cases nearly the quarter of the duct width. The RSM pre-
sents the same trends with the experiments but it cannot
capture the maximum values (u0u0and v0v0-components,
Fig. 8). Additionally, the (lower) maximum values pre-
dicted by the model, are shifted towards the core flow in
areas where the experiment shows that the flow has low
turbulence. Again for the concave wall region, the two
eddy-viscosity models seem to be able to represent correctly
the normal Reynolds-stresses. For the symmetry plane
(z/H = 3, Fig. 9) both the eddy-viscosity models provide
far better results than the Reynolds-stress model. It has
been found that this behavior is the same for the other
z/H stations (not shown here), except the first one located
in the bottom wall region. Finally, for the shear stresses,
Fig. 10, again, the RSM provides very good results in the
convex wall region but it cannot reproduce correctly the
distributions in the concave wall region. The linear and
non-linear model can provide results with better accuracy.

The station of 45� is characterized by the existence of the
vortex pair generated from the two curved walls. The con-
vex wall destabilizes the flow and this affects the predic-
tions, especially the ones of the eddy-viscosity models.
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Both models, in the convex wall region, predicted thicker
boundary layers in contrast to the Reynolds-stress model,
which is able to overcome this problem. This specific capa-
bility of the RSM was shown also for the Reynolds-stress
distributions in the convex wall region. The deficit of the
Reynolds-stress model is related to its weakness to provide
accurate results for the concave wall region. As the core
flow comes from the straight part of the duct, it enters into
the curved region by forming a small region where the flow
stagnates before turning in order to follow the concave wall
curvature. Probably, a better representation of the pressure
term Pij, could resolve this problem. Of course, the use of
the transport equation for the triple correlation as pro-
posed by Craft (1998) should be tested but as already writ-
ten, this was impossible in the present study.
4.4. Measurement station D1

Right after the bend, in the D1 cross-section, the flow is
still fully three-dimensional. The two symmetrical vortices
are developing in the cross-section up to the symmetry line
between the bottom and the top wall. As Sotiropoulos and
Ventikos (1998) refer, the measured values for the U-veloc-
ity component show an S-shaped distribution close to the
convex wall, shown in Fig. 11. This axial velocity distortion
is caused by the intense secondary motion. As we move to
the symmetry plane, this motion spreads and the axial
velocity profiles become again smooth and undistorted.
The axial velocity distributions on the symmetry showed
that the three models present similar results. As a first
observation, in the convex wall region, again the two
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eddy-viscosity models keep their tendency to overpredict
the boundary layer thickness, while the RSM computes
thinner boundary layers. One interesting point is that the
non-linear model is able to capture the S-shaped distortion
appearing at z/H = 0.75, Fig. 11, although it is clear that
this region covers a larger distance in the y/H axis. The
RSM is not able to predict such a distribution. Although
it is difficult to conclude, it seems that the present results
with the original variant of the Craft–Launder–Suga non-
linear model show a better distribution of the axial velocity
inside the S-shaped region than these of Sotiropoulos and
Ventikos (1998) who used the same model but in the k–x
variant.

For the core flow region, all the models provide satisfac-
tory results. A close investigation shows that the RSM is
closer to the experimental measurements than the two
eddy-viscosity models. Finally, in the concave wall region
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Fig. 11. Dimensionless velocity distributions at D1 measure
and again for the axial velocity, the RSM behaves as in
the previous station, i.e., it calculates a thinner boundary
layer. The linear and non-linear models, both predict
thicker boundary layers, leading to the higher velocity val-
ues in the core flow region.

The existence of the intense secondary motion is also
shown in the distributions of the V- and W-velocity compo-
nents, Fig. 11. In the convex wall region, the V-velocity dis-
tributions are satisfactorily predicted by the RSM model
but it is remarkable that the non-linear model can predict
correctly the occurring local distortions between
y/H = 0.1 and 0.4, although the maximum and the mini-
mum experimental values cannot be captured. In the con-
cave wall region, all the models provide similar results
for the V-velocity.

Regarding the predictions of the W-velocity component,
Fig. 11, the three models present similar results for
z/H = 0.75. Small differences occurred in the convex wall
region for the first plane close to the bottom wall,
z/H = 0.0625 (not shown here), where the RSM predicts
thinner boundary layer in contrast to the two eddy-viscos-
ity models which present again, thicker boundary layers.

The Reynolds-stress distributions in the D1 measure-
ment stations showed in general that the RSM gives better
predictions in the convex wall region and this is true espe-
cially for the shear stresses. As in the 45� station, the RSM
systematically underpredicts all the components of the
Reynolds stresses, in the concave wall region. The Rey-
nolds-stress model seems to overdump the turbulence in
the concave wall and this could be possibly related to the
computed distributions in the upstream flow region.

The observations regarding the behavior of the three
models in the 45� and D1 stations are similar for the D2
station also. Due to the lack of space, additional figures
will be not provided. For the axial velocity component,
the three models provide similar results. In the convex wall
region, the non-linear model gave the best predictions for
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ment station and for z/H = 0.75 (symbols as in Fig. 6).
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the boundary layer thickness. In the concave wall, the
RSM predicted in an excellent manner the U-velocity dis-
tribution inside the boundary layer. The three models have
predicted the V- and W-velocity components with a satis-
factory quality. In some locations the differences were very
small.

The results presented in this work have in general the
same quality with the predictions obtained in previous
works related to closed ducts. Although it is difficult to
derive some strict conclusions when one has to compare
all these sets together (because of the different quality
and kind of the plots, etc.), in all the works it is clear that
the curvature effects, especially the ones related to the flow
destabilization, lead to the need of enhanced modeling. The
main difference (and even additional point) between the
already published works and the present work is that a very
close investigation has been performed by trying to report
all the steps during the modeling of the flow and by pre-
senting comparisons not only for the velocity distributions
but for all the Reynolds-stress components. This might be
helpful for the final judgment regarding the quality of the
predictions between three models.

5. Conclusions

The right choice of a turbulence model when an indus-
trial turbulent flow problem is faced is a critical point, espe-
cially when this problem involves three-dimensional flow
phenomena, which need an accurate modeling. Based on
the application of three models, it has been shown in this
study that the cubic non-linear eddy-viscosity model of
Craft et al. (1996) can be a good first choice. It has the
potential to provide rapid solutions with a quite satisfac-
tory accuracy in conditions where curvature governs the
flow development. This model is also able to give (with a
lower quality) acceptable predictions for the Reynolds-
stress distributions. The behavior of the model showed very
clearly that it has been well calibrated although it seems
that it needs further development in order to be able to
capture the shear stress distributions near the wall regions
where longitudinal pressure gradients occur. On the other
hand, the Reynolds-stress model of Craft (1998) performed
well for the majority of the velocity distributions. It must
be noticed that generally it performed better in the repre-
sentation of the Reynolds-stresses, especially the shear
ones. Unfortunately we cannot conclude that it was found
to be the best among the models since it could not provide
good prediction for the concave wall region. One possible
reason could be the adoption of the GGD hypothesis
instead of the original proposition of Craft (1998). This
could not be examined in the present work due to the major
problems encountered when we tried to proceed with the
original model. Finally, the linear model performed well
in the predictions of the velocity distributions and surpris-
ingly enough, in some predictions regarding the normal
and shear stresses for the concave wall region where the
longitudinal pressure distribution is not so strong as it is
on the convex wall. Nevertheless, this study showed that
this model can be an acceptable choice for a first indicative
reproduction of this complicated flow field.

Of course, the main question remains: is it worth pro-

ceeding with a complex turbulence model? The answer
should be given by considering many parameters, thus
the choice it is left to the reader.
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